If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2-3x+5)+(2x^2+11x-1)=0
We get rid of parentheses
x^2+2x^2-3x+11x+5-1=0
We add all the numbers together, and all the variables
3x^2+8x+4=0
a = 3; b = 8; c = +4;
Δ = b2-4ac
Δ = 82-4·3·4
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4}{2*3}=\frac{-12}{6} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4}{2*3}=\frac{-4}{6} =-2/3 $
| 2x+(7x2)=8 | | 6/15x=8 | | v-5+6=-7v+6 | | y+6y+9=5 | | Y=4/(9x) | | 7x-2=3x+50 | | x-0.05x=3040 | | 5x+2x^-1=-11 | | P(x)=x²-5x | | 1.055x=8 | | P(X)=X2-5x | | 5(x-2)+3(x+1)=45 | | 1/4x-1/8=7/8+x | | 3/4x-5=3/2x-11 | | 120=x(3x+2) | | 5^(2^(3x-2))=3125^(25^(x+7)) | | 82=(x+2)+(2x+5)+2(2x-1) | | ((3x)/2)+(2/5)=((7x)/10)-(3/4) | | 2x+6=-x-18 | | 4z+1=2z+1 | | 5(2x-+8)+15=-15 | | 3n-1+20+70=180 | | x*x*x=4300 | | 5x-8+(6x-(3x-30))=6x+30 | | X-8=-11-3x | | 8v^2-32=24v | | 42x=14+3 | | -8(k-92)=0 | | 7x+29=197-5x | | 2.m+6.m=32 | | 97x=54 | | 6(n+3)=2(3n+1) |